

ACSL [Assembly Language Programming]

Assembly Language Programming

Programs written in high-level languages such as BASIC, Ada and Pascal are usually

converted by compilers into assembly language (which in turn is translated into machine

language programs - sequences of 1’s and 0’s – by an assembler). Even today, with

very good quality compilers available, there is the need for programmers to understand

assembly language. First, it provides programmers with a better understanding of the

compiler and what are its constraints. Second, on occasion, programmers find

themselves needing to program directly in assembly language in order to meet constraints

in execution speed or space (for example, writing games for micros and arcade

machines). A good programmer can typically tweek and tune an assembly language

program to run significantly better than the code generated by even the best compilers.

The ASCL Assembly Language, AAL, runs on an ACSL computer that has an unlimited

amount of memory. Each “word” of memory contains a decimal integer in the

range –999,999 through 999,999. Additions, subtractions, and multiplications are

performed modulo 1,000,000. For example, 999,998 plus 7 equals 5. Division is

performed in the conventional sense, but the fractional part of the answer is dropped – not

rounded off. For example, 14 divided by 5 is 2.

Execution starts at the first line of the program and continues sequentially, except for

“branch” instructions, until the “end” instruction is encountered. The result of each

operation is stored in a special word of memory, called the “accumulator” (ACC). Each

line of an assembly language program has the following fields (lower-case italics

indicates optional components):

 label OPCODE LOC comments

The label is a character string beginning in the first column. Valid OPCODE’s are listed

in the chart below. The LOC field is either a reference to a label or “immediate data”.

For example, “LOAD A” would put the contents referenced by the label “A” into the

ACC; “LOAD =123” would store the value 123 in the ACC. Only those instructions that

do not modify the LOC field can use the “immediate data” format. In the following

chart, they are indicated by an asterisk in the first column.

OPCODE ACTION

* LOAD Contents of LOC are placed in the ACC. LOC is unchanged.

 STORE Contents of ACC are placed in the LOC. ACC is unchanged.

* ADD Contents of LOC are added to the contents of the ACC. The sum is

stored in the ACC. LOC is unchanged. Addition is modulo 1,000,000.

* SUB Contents of LOC are subtracted from the contents of the ACC. The

difference is stored in the ACC. LOC is unchanged. Subtraction is

modulo 1,000,000.

* MULT The contents of LOC are multiplied by the contents of the ACC. The

product is stored in the ACC. LOC is unchanged. Multiplication is

modulo 1,000,000.

* DIV Contents of LOC are divided into the contents of the ACC. The

ACSL [Assembly Language Programming]

signed integer part of the quotient is stored in the ACC. LOC is

unchanged.

BE Branch to instruction labeled with LOC if ACC=0.

BG Branch to instruction labeled with LOC if ACC>0.

BL Branch to instruction labeled with LOC if ACC<0.

BU Branch unconditionally to instruction labeled with LOC.

END Program terminates. LOC field is ignored.

READ Read a signed integer (modulo 1,000,000) into LOC.

* PRINT Print the contents of LOC.

DC The value of the memory word defined by the LABEL field is defined

to contain the specified constant. The LABEL field is mandatory for

this opcode. The ACC is not modified.

References

We chose to define our own assembly language rather than use a “real” one in order to

eliminate the many sticky details associated with real languages. The basic concepts of

AAL are common to all assembly languages. A reference manual for any real assembly

language should prove helpful to prepare for this category. Also, the following article

presents many of the concepts of assembly language programming in a very readable and

fun way:

Dewdney, A.K. “Computer Recreations,” in Scientific American, May 1984, pp. 14-22.

Sample Problems

After the following program is executed,

what value is in location TEMP?

TEMP DC 0

A DC 8

B DC -2

C DC 3

 LOAD B

 MULT C

 ADD A

 DIV B

 SUB A

 STORE TEMP

The ACC takes on values -2, -6, 2, -1 and -9

in that order. The last value, -9, is stored in

TEMP.

ACSL [Assembly Language Programming]

After the following program is executed, what is the

final value of A ? The data for the program is 3.

 READ N

A DC 1

START LOAD N

 SUB =1

 BE RSLT

 STORE N

 LOAD A

 ADD =2

 STORE A

 BU START

RSLT END

If the following program has an input value of N,

what is the final value of X which is computed?

Express X as a mathematical expression in

terms of N.

 READ X

 LOAD X

TOP SUB =1

 BE DONE

 STORE A

 MULT X

 STORE X

 LOAD A

 BU TOP

DONE END

This program finds the Nth odd integer. The

following table gives the values of N and A

through execution:

 N A

 3 1

 2 3

 1 5

 0 5

Thus, the final value of A is 5.

This program loops between labels TOP and

DONE for A times. A has an initial value of X,

and subsequent values of A-1, A-2, …, 1. Each
time through the loop, X is multiplied by the

current value of A. Thus, X=A*A-1*…*1 or

X=A!. Since the initial value of A is the

number input (i.e., N), X=N!.

ACSL [Assembly Language Programming]

X DC 1

Y DC 5

Z DC 1

TEST LOAD X
 SUB Y

 BE END

 LOAD Y

 SUB 1

 STORE Y

 LOAD Z

 MULT X

 STORE Z
 LOAD X

 ADD 1

STORE X

BU TEST

END

Answer:

X = 3

Y = 3

Z = 2

X DC 2

Y DC 3

Z DC 1

 LOAD X

 SUB Y

 STORE Z

PRINT Z

 LOAD Y
 SUB =2

 STORE Y

 PRINT X

 SUB Z

 PRINT Y

STORE X

 PRINT X

 ADD Z
 ADD X

 STORE X

PRINT X

Answer

-1

2
1

2

3

ACSL [Assembly Language Programming]

DATA 2, 1, 2, 2, 3, 4, 4, 4

S DC 0

TOP READ I
 READ J

 LOAD I

 MULT J

 STORE S

 LOAD J

 SUB I

 BE MID

 LOAD J
 ADD =1

 STORE J

 BU TOP

MID LOAD I

 SUB =4

 BE DONE

 LOAD I

 ADD =1
 STORE I

 BU TOP

DONE END

Answer

S = 16

ACSL [Assembly Language Programming]

Answer:

90

ACSL [Assembly Language Programming]

Answer:

-3, 5

