Boolean Algebra

1. 02-03 C2 Boolean Algebra

Simplify: (NOT A OR A AND NOT B) AND (NOT A AND B)

2. 02-03 C2 Boolean Algebra

Find all ordered triples that make the following expression TRUE:

NOT A AND C OR B AND (NOT (A OR C))

3. 03-04 C2 Boolean Algebra

Find all ordered pairs that make the following expression TRUE: $\overline{A} B + \overline{(A + \overline{B})}$

4. 03-04 C2 Boolean Algebra

Simplify the following expression. $A(\overline{A} + B) + B(B + C) + B$

5. 04-05 C2 Boolean Algebra

Simplify: $\overline{A(\overline{A} + B)} + B$

6. 04-05 C2 Boolean Algebra

List all the ordered pairs that make the following expression TRUE: $\overline{A + B} + \overline{A}B$

7. 05-06 C2 Boolean Algebra

Simplify $\overline{A\overline{B}} + \overline{\overline{A} + B}$

8. 05-06 C2 Boolean Algebra

How many ordered triples make the following expression TRUE?

$$A\overline{B} + \overline{A}C + B\overline{C}$$

9. 06-07 C2 Boolean Algebra

Simplify completely: $\overline{A}B(A + \overline{B})$

10. 06-07 C2 Boolean Algebra

How many ordered triples make the following expression TRUE?

$$(A + BC)(A\overline{B} + C)$$

11. 07-08 C2 Boolean Algebra

Simplify the following Boolean expression: $\overline{A\overline{B}} + A(\overline{B} + 1)$

12. 07-08 C2 Boolean Algebra

Which ordered triples make the following expression TRUE? $AB + B(C + \overline{A})$

13. 08-09 C2 Boolean Algebra

Simplify completely: $\overline{A}(A\overline{B}C + \overline{A}B\overline{C})C$

14. 08-09 C2 Boolean Algebra

List all ordered triples that make the following expression true: $(AB + \overline{C})\overline{\overline{AB}}$

15. 09-10 C2 Boolean Algebra

Simplify the following Boolean expression:
$$A(AB + A) + B(AB + A)$$

16. 09-10 C2 Boolean Algebra

Which ordered triples make the following Boolean expression FALSE?

$$AB + \overline{C}(A + \overline{B}) + \overline{B}C$$

17. 10-11 C2 Boolean Algebra

How many ordered triples make the following Boolean expression TRUE?

$$A(\overline{B}+C) + B(\overline{A}+\overline{C})$$

18. 10-11 C2 Boolean Algebra

Simplify the following Boolean expression: $A(\overline{A+B}) + B(\overline{A}+B)$

19. 11-12 C3 Boolean Algebra

Simplify the following Boolean expression: $A(AB + B) + A(AB + B)$	В
--	---

20. 11-12 C3 Boolean Algebra

Find all ordered triples that make the following Boolean expression TRUE.

$$A(B+C) + B(A+C)$$

21. 12-13 C3 Boolean Algebra

Simplify the following Boolean expression: $A(\overline{A} + B) + \overline{AB}$

22. 12-13 C3 Boolean Algebra

How many ordered triples make the following Boolean expression true?

$$(AB+C)(A+B)(BC+A)$$

23. 13-14 C3 Boolean Algebra

Which ordered pairs make the following Boolean expression TRUE? $A(\overline{AB} + \overline{B})$

24. 13-14 C3 Boolean Algebra

How many ordered triples make the following circuit TRUE? $\overline{A} + B\overline{C} + A(\overline{B} + C)$

25. 14-15 C3 Boolean Algebra

Simplify the following Boolean expression: $A(\overline{B}C) + (\overline{\overline{A}} + B)$

26. 14-15 C3 Boolean Algebra

Which of the following Boolean Algebra expressions are equivalent?

a) $\overline{AB} + \overline{BC}$ b) $\overline{A} + C$ c) $\overline{\overline{AC}}$ d) 1

27. 15-16 C3 Boolean Algebra

How many ordered pairs make the following Boolean expression TRUE?

$$A(B+AB)+AB$$

28. 15-16 C3 Boolean Algebra

Simplify the following Boolean algebra expression: $\overline{\overline{AB}} + \overline{B+C} + A(\overline{B}+C)$

Solution

1. 02-03 C2 Boolean Algebra

(NOT A OR A AND NOT B) AND (NOT A AND B) = NOT A AND B (NOT A AND NOT A AND B) OR (A AND NOT A AND B AND NOT B) = NOT A AND B OR 0 = NOT A AND B

2. 02-03 C2 Boolean Algebra

NOT A AND C OR B AND (NOT (A OR C)) =
$$\overline{AC} + B(\overline{A+C})$$
 (0,0,1),(0,1,0),(0,1,1)

А	В	С	ĀC	$\overline{A+C}$	$B(\overline{A+C})$	OR
0	0	0	0	1	0	0
0	0	1	1	0	0	1
0	1	0	0	1	1	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0

3. 03-04 C2 Boolean Algebra

$$\overline{A} B + (A + \overline{B}) = \overline{A}B + \overline{A}B = \overline{A}B$$
(0,1)
If $\overline{A}B = 1$ then $\overline{A} = 1$ AND $B = 1 \implies A = 0$ AND $B = 1$

4. 03-04 C2 Boolean Algebra

$$A(\overline{A} + B) + B(B + C) + B = A\overline{A} + AB + BB + BC + B = B$$

 $0 + AB + B + BC = B(A + 1 + C) = B(1) = B$

5. 04-05 C2 Boolean Algebra

$$\overline{A(\overline{A} + B)} + B = \overline{A\overline{A} + AB} + B = \overline{0 + AB} + B = \overline{AB} + B = 1$$

$$\overline{A} + \overline{B} + B = \overline{A} + 1 = 1$$

6. 04-05 C2 Boolean Algebra

 $\overline{A+B} + \overline{A}B$

۰.		1 211	,				
	Α	В	A + B	$\overline{A+B}$	\overline{A}	$\overline{A}B$	$\overline{A+B} + \overline{A}B$
	0	0	0	1	1	0	1
	0	1	1	0	1	1	1
	1	0	1	0	0	0	0
	1	1	1	0	0	0	0

7. 05-06 C2 Boolean Algebra

Simplify

$$\overline{A\overline{B} + \overline{A} + B} = \overline{A\overline{B} + \overline{A}\overline{B}} = \overline{\overline{B}(A + \overline{A})} = \overline{\overline{B}*1} = \overline{\overline{B}} = B$$

8. 05-06 C2 Boolean Algebra

Th	e truth	table is	shown	below.	There	are 6 th	at make	the exp	pression	n TRUE.
	Α	В	С	\overline{A}	\overline{B}	\overline{C}	$A\overline{B}$	$\overline{A}C$	$B\overline{C}$	+
	0	0	0	1	1	1	0	0	0	0
	0	0	1	1	1	0	0	1	0	1
	0	1	0	1	0	1	0	0	1	1
	0	1	1	1	0	0	0	1	0	1
	1	0	0	0	1	1	1	0	0	1
	1	0	1	0	1	0	1	0	0	1
	1	1	0	0	0	1	0	0	1	1
	1	1	1	0	0	0	0	0	0	0

9. 06-07 C2 Boolean Algebra

$$\overline{A}B(A+\overline{B}) = \overline{A}BA + \overline{A}B\overline{B} = 0$$

10. 06-07 C2 Boolean Algebra

$$(\overline{A} + BC)(A\overline{B} + C) = \overline{A}A\overline{B} + \overline{A}C + AB\overline{B}C + BCC =$$

 $0 + \overline{A}C + 0 + BC = C(\overline{A} + B) \Longrightarrow C = 1 \text{ and } \overline{A} + B = 1$
If $B = 1$ then $A = *$. If $B = 0$ then $A = 0$.
The triplets are (*,1,1) and (0,0,1)

(0,0), (0,1)

В

6

0

3

$$A\overline{B} + A(\overline{B}+1) = \overline{A} + B + A \bullet 1 = \overline{A} + B + A = 1 + B = 1$$
 1

12. 07-08 C2 Boolean Algebra

$$AB + B(C+A) = AB + BC + AB \tag{1,1,0}$$

$$= B(A + C + A)$$
 (0,1,1)

$$= B(1+C) = B (0,1,0)$$

So A = *, B = 1, C = * and the triples are (*,1,*)

=

13. 08-09 C2 Boolean Algebra

$$\overline{A}(A\overline{B}C + \overline{A}B\overline{C})C = \overline{A}A\overline{B}CC + \overline{A}\overline{A}B\overline{C}C = 0 + 0 = 0 \qquad 0$$

14. 08-09 C2 Boolean Algebra

The truth table is shown below.

Α	В	С	AB	\overline{C}	$AB + \overline{C}$	\overline{A}	ĀB	$\overline{\overline{AB}}$	$(AB + \overline{C})\overline{\overline{AB}}$
0	0	0	0	1	1	1	0	1	1
0	0	1	0	0	0	1	0	1	0
0	1	0	0	1	1	1	1	0	0
0	1	1	0	0	0	1	1	0	0
1	0	0	0	1	1	0	0	1	1
1	0	1	0	0	0	0	0	1	0
1	1	0	1	1	1	0	0	1	1
1	1	1	1	0	1	0	0	1	1

15. 09-10 C2 Boolean Algebra

$$A(A\overline{B} + \overline{A}) + \overline{B}(\overline{A}B + A) = AA\overline{B} + A\overline{A} + AB\overline{B} + A\overline{B}$$
$$= A\overline{B} + 0 + 0 + A\overline{B} = A\overline{B}$$

NOHO ACSL: North Hollywood American Computer Science Leaders

(0,0,0),(1,0,0),(1,1,0),(1,1,1)

 $A\overline{B}$

16. 09-10 C2 Boolean Algebra

Α	В	С	\overline{B}	\overline{C}	AB	$A + \overline{B}$	$\overline{C}(A+\overline{B})$	$\overline{B}C$	$AB + \overline{C}(A + \overline{B}) + \overline{B}C$
0	0	0	1	1	0	1	1	0	1
0	0	1	1	0	0	1	0	1	1
0	1	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0
1	0	0	1	1	0	1	1	0	1
1	0	1	1	0	0	1	0	1	1
1	1	0	0	1	1	1	1	0	1
1	1	1	0	0	1	1	0	0	1

The truth table is as follows:

Therefore, (0,1,0) and (0,1,1) make the statement FALSE.

17. 10-11 C2 Boolean Algebra

A	A(B+C) + B(A+C) = AB + AC + BA + BC											
	Α	В	С	$A\overline{B}$	AC	$B\overline{A}$	$B\overline{C}$	$A\overline{B} + AC + B\overline{A} + B\overline{C}$				
	0	0	0	0	0	0	0	0				
	0	0	1	0	0	0	0	0				
	0	1	0	0	0	1	1	1				
	0	1	1	0	0	1	0	1				
	1	0	0	1	0	0	0	1				
	1	0	1	1	1	0	0	1				
	1	1	0	0	0	0	1	1				
	1	1	1	0	1	0	0	1				

18. 10-11 C2 Boolean Algebra

$$A(\overline{A+B}) + B(\overline{A}+B) = A(\overline{AB}) + \overline{AB} + BB$$
$$= 0 + B(\overline{A}+1) = B$$

19. 11-12 C3 Boolean Algebra

$$A(\overline{AB} + B) + B = A\overline{AB} + AB + B$$

= 0 + B(A + 1)
= B

NOHO ACSL: North Hollywood American Computer Science Leaders

(0,1,0), (0,1,1)

6

В

$$A(\overline{B} + C) + B(A + \overline{C}) = A\overline{B} + AC + AB + B\overline{C})$$

= $A(\overline{B} + C + B) + B\overline{C})$
= $A(1 + C) + B\overline{C}$
= $A + B\overline{C}$

21. 12-13 C3 Boolean Algebra

$$A(\overline{A} + B) + \overline{AB} = A\overline{A} + AB + \overline{AB}$$
$$= 0 + AB + \overline{AB} = B(A + \overline{A}) = B$$

22. 12-13 C3 Boolean Algebra

X =	$X = (AB + \overline{C})(A + \overline{B})(BC + A)$												
Α	B	C	\overline{B}	\overline{C}	AB	$AB + \overline{C}$	$A + \overline{B}$	BC	BC + A	X			
0	0	0	1	1	0	1	1	0	0	0			
0	0	1	1	0	0	0	1	0	0	0			
0	1	0	0	1	0	1	0	0	0	0			
0	1	1	0	0	0	0	0	1	1	0			
1	0	0	1	1	0	1	1	0	1	1			
1	0	1	1	0	0	0	1	0	1	0			
1	1	0	0	1	1	1	1	0	1	1			
1	1	1	0	0	1	1	1	1	1	1			

23. 13-14 C3 Boolean Algebra

$$A(\overline{AB} + \overline{B}) = A\overline{AB} + A\overline{B} = 0 + A\overline{B} = A\overline{B}$$

$$A\overline{B} = 1 \rightarrow A = 1 \land \overline{B} = 1 \rightarrow A = 1 \land B = 0 \rightarrow (1, 0)$$
(1,0)

NOHO ACSL: North Hollywood American Computer Science Leaders

3

В

X =	$X = \overline{A} + B\overline{C} + A(\overline{B} + C)$												
Α	В	С	\overline{B}	\overline{C}	\overline{A}	$B\overline{C}$	$\overline{B} + C$	$A(\overline{B}+C)$	X				
0	0	0	1	1	1	0	1	0	1				
0	0	1	1	0	1	0	1	0	1				
0	1	0	0	1	1	1	0	0	1				
0	1	1	0	0	1	0	1	0	1				
1	0	0	1	1	0	0	1	1	1				
1	0	1	1	0	0	0	1	1	1				
1	1	0	0	1	0	1	0	0	1				
1	1	1	0	0	0	0	1	1	1				

This is a tautology so all 8 of the possible inputs make it TRUE.

25. 14-15 C3 Boolean Algebra

$$A(\overline{B}C) + (\overline{\overline{A}} + \overline{B}) = A\overline{B}C + \overline{\overline{A}}\overline{B} = A\overline{B}C + A\overline{B} = A\overline{B}(C+1) = A\overline{B}$$

26. 14-15 C3 Boolean Algebra

a.
$$\overline{A\overline{B}} + \overline{B\overline{C}} = \overline{A} + \overline{\overline{B}} + \overline{\overline{B}} + \overline{\overline{C}} = \overline{A} + B + \overline{B} + C = \overline{A} + 1 + C = 1$$
 a and d
b. $\overline{A} + C$ **c.** $\overline{\overline{AC}} = A + \overline{C}$ **d.** 1

27. 15-16 C3 Boolean Algebra

$$\overline{A}(B + A\overline{B}) + \overline{AB} = \overline{AB} + \overline{AAB} + \overline{A} + \overline{B} = \overline{AB} + 0 + \overline{A} + \overline{B}$$

$$= \overline{A}(B + 1) + \overline{B} = \overline{A} + \overline{B} = \overline{AB}$$
3

If $\overline{AB} = 1$, then AB = 0. So $A = 0 \lor B = 0$. Therefore 3 ordered pairs make the expression TRUE. (0,1), (1,0), (0,0)

28. 15-16 C3 Boolean Algebra

$$\overline{AB} + \overline{B+C} + A(\overline{B}+C) = \overline{\overline{A}} + \overline{B} + \overline{BC} + A\overline{B} + AC$$

$$= A + AC + \overline{B} + A\overline{B} + \overline{BC}$$

$$= A(1+C) + \overline{B}(1+A+\overline{C})$$

$$= A + \overline{B}$$