CLASSROOM DIVISION

1. Computer Number Systems

How many 1 's are there in the binary representations of :

$$
16743_{8}
$$

2. Computer Number Systems
3.
4.

Convert $3 F 6 A_{16}$ to octal.

Begin with a rhombus. This is Stage 1 and there is one rhombus with 4 segments in its perimeter. The next stage adds a congruent rhombus on each perimeter edge of the previous figure. Now there are five congruent rhombuses and 12 segments in its perimeter. The third stage adds 8 more for a total of 13 and 20 segments in its perimeter. Each subsequent stage is formed in the same manner. How many segments are its perimeter after Stage 6 is completed?

4. Recursive Functions

Find $f(12)$ given:

$$
f(x)= \begin{cases}f(x-2)-3 & \text { if } x \geq 10 \\ f(2 x-10)+4 & \text { if } 3 \leq x<10 \\ x * x+5 & \text { if } x<3\end{cases}
$$

5. What Does This Program Do?

What is outputted when this program is run?
$\mathrm{a}=12: \mathrm{b}=1: \mathrm{c}=0: \mathrm{d}=4: \mathrm{e}=2$
if $a>d$ then $a=a-d$
if $(d-b)<(e-a)$ then $d=d+e$
if $a^{*} b==d^{*}$ e then $e=a * b / e$ else $d=d * e / a$
if $d \uparrow 2<=(b+1) \uparrow 2$ then $d=b+1$ else $b=b+1$
if $a+b * c==d+e * c$ then $a=b * c$ else $d=e * c$
output $(a+e) / b+(d+c) \uparrow b * c$
5.
4.

CLASSROOM DIVISION

6. Computer Number Systems

Convert to octal:

$$
3 \mathrm{~A}^{2} \mathrm{~B}_{16}
$$

7. Computer Number System:

Evaluate and express the answer in hex:

$$
32_{8}+1011_{2}+352_{10}+\mathrm{AF}_{16}
$$

8. Recursive Functions

Begin with a capital T consisting of 2 congruent segments.
At the end of each segment place a segment half as long and perpendicular to it. Continue this process for an additional 5 times. How many segments are in the resulting figure?

9. Recursive Functions

9.

Find $f(12,7)$ given:

$$
f(x, y)= \begin{cases}f(x-1, y+2)+3 & \text { if } x>y \\ 2 * f(x+1, y-1)-5 & \text { if } x<y \\ x * x+y & \text { if } x=y\end{cases}
$$

10. What Does This Program Do?

What is outputted when this program is run?
$a=1: b=2: c=3: d=4: e=4: f=6$
if $(d / b)<(f / a)$ then $d=d / b$
$\mathrm{a}=\mathrm{f} \uparrow \mathrm{b} / \mathrm{c} \uparrow(\mathrm{d} / \mathrm{b})$
if $(a<=f) \& \&(b>e)$ then $a=f$ else $b=e$
if $\operatorname{abs}(c-f)!=\operatorname{int}(f / c)$ then $c=f / c$ else $f=f / c$
if $(a==b)|\mid(c==d)$ then $a=a+b$
$\mathrm{c}=\mathrm{c}+\mathrm{d}$
output $(\mathrm{b} * \mathrm{c}) *(\mathrm{f}+\mathrm{d}) / \mathrm{a} / 2 * \mathrm{~d}-\mathrm{c}+\mathrm{e} \uparrow(\mathrm{b}-2 * \mathrm{~d})$
6.
7.
8.

8.

Contest \#1

