CLASSROOM DIVISION SOLUTIONS

1. Computer Number Systems

$16743_{8}=001110111100011_{2}$
So there are 9 1's.

1. 9
2. Computer Number Systems
3. 37552_{8} or 37552

$$
\begin{array}{rlllll}
3 \mathrm{FGA}_{16} & = & \begin{array}{lllllll}
011 & 1111 & 0110 & 1010_{2} \\
& & 0 & 011 & 111 & 101 & 101
\end{array} 0_{10} \\
& = & 3 & 7 & 5 & 5
\end{array} 2_{8}
$$

2. Recursive Functions

Stage 1 has 1 rhombus and 4 segments. Stage 2 has 5 rhombuses and 12
3. 44
segments since 4 were drawn on the original sides. In Stage 3 there are 12 perimeter segments but because 8 are used in more than 1 rhombus, there are only 8 new rhombuses drawn for a total of 13 and 20 segments. Continuing in this manner, Stage 4 has 12 new rhombuses for a total of 25 and 28 segments. Stage 5 adds 16 for a total of 41 and has 36 segments and Stage 6 adds 20 for a total of 61 and 44 segments.
The sequence is $4,12,20,28,36,44 \ldots$

3. Recursive Functions

$f(12)=f(10)-3=11$
$f(10)=f(8)-3=14$
$f(8)=f(6)+4=17$
$f(6)=f(2)+4=13$
$f(2)=9 \quad$ Now substitute backwards.
4. 11
5. What Does This Program Do?

The table contains the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e after each line.
5. 6

a	b	c	d	e
12	1	0	4	2
8	1	0	4	2
8	1	0	4	2
8	1	0	4	4
8	2	0	4	4
8	2	0	0	4

$(\mathrm{a}+\mathrm{e}) / \mathrm{b}+(\mathrm{d}+\mathrm{c}) \uparrow \mathrm{b}^{*} \mathrm{c}$
$=(8+4) / 2+(0+0) \uparrow 2 * 0=12 / 2+0^{2} * 0=6+0=6$

CLASSROOM DIVISION SOLUTIONS

6. Computer Number Systems

$$
\begin{aligned}
3 \mathrm{~A}_{9} \mathrm{~B}_{16} & =0011101010011011_{2} \\
& =0011101010011 \mathrm{Ol1}_{2} \text { grouping by three } \\
& =3
\end{aligned}
$$

7. Computer Number Systems
$32_{8}=26$
$1011_{2}=11$
$352_{10}=352$
$\mathrm{AF}_{16}=175$
So $32_{8}+1011_{2}+352_{10}+\mathrm{AF}_{16}$
$=26+11+352+175$
$=564$
But $564=234_{16}$

8. Recursive Functions

The original Thas 2 segments. The next step adds 3 more segments for a total of 5 . The next step adds 6 segments for a total of 11 . Next 12 segments are added for 23 . The sequence formed is:
$2,5,11,23,47, \ldots, 3 * 2^{n-1}-1, \ldots$
The $7^{\text {th }}$ term would be $3 * 2^{6}-1=191$
9. Recursive Functions
8. 191
9. 525

$$
\begin{aligned}
f(12,7) & =f(12-1,7+2)+3=f(11,9)+3=522+3=525 \\
f(11,9) & =f(11-1,9+2)+3=f(10,11)+3=519+3=522 \\
f(10,11) & =2 * f(10+1,11-1)-5=2 * f(11,10)-5=2 * 262-5=519 \\
f(11,10) & =f(11-1,10+2)+3=f(10,12)+3=259+3=262 \\
f(10,12) & =2 * f(10+1,12-1)-5=2 * f(11,11)-5=2 * 132-5=259 \\
f(11,11) & =11^{*} 11+11=132 \text { Now substitute backwards. }
\end{aligned}
$$

6. 35233_{8} or 35233
7. 234_{16} or 234

CLASSROOM DIVISION SOLUTIONS

10. What Does This Program Do?

The table contains the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f after each line.

a	b	c	d	e	f
1	2	3	4	4	6
1	2	3	2	4	6
12	2	3	2	4	6
12	4	3	2	4	6
12	4	2	2	4	6
16	4	2	2	4	6
16	4	4	2	4	6

$$
\begin{aligned}
& (\mathrm{b} * \mathrm{c}) *(\mathrm{f}+\mathrm{d}) / \mathrm{a} / 2 * \mathrm{~d}-\mathrm{c}+\mathrm{e} \uparrow(\mathrm{~b}-2 * \mathrm{~d}) \\
& \quad=(4 * 4) *(6+2) / 16 / 2 * 2-4+4 \uparrow(4-2 * 2) \\
& \quad=16 * 8 / 16 / 2 * 2-4+4 \\
& \quad=128 / 16 / 2 * 2-4+1=8 / 2 * 2-4+1=5
\end{aligned}
$$

10. 5
