2017-2018

American Computer Science League

Contest #3

1. Boolean Algebra	1. (0,1) and (0, 0)
$\overline{A(A\overline{B}+B)} = \overline{A} + \overline{A\overline{B}+B} = \overline{A} + (\overline{A\overline{B}})\overline{B} = \overline{A} + (\overline{A} + \overline{\overline{B}})\overline{B}$ $= \overline{A} + \overline{A}\overline{B} + B\overline{B} = \overline{A}(1+\overline{B}) = \overline{A}$ So $\overline{A} = 1$. $A = 0$. Therefore (0, 1) and (0, 0) make it true.	
2. Boolean Algebra	2. A
$A\overline{B}(A+\overline{B}) + AB = A\overline{B}A + A\overline{B}\overline{B} + AB = A\overline{B} + A\overline{B} + AB$ $= A\overline{B} + AB = A(\overline{B} + B) = A\Box = A$	
3. Data Structures Nibbles Wood Away is the name of the Big Blue Bug that is a Rhode Island icon atop a building in Providence.	3. A, B, E, O
4. Data Structures	4. T
The queue is constructed using FIFO as follows: O, OC, OCE, CE, CEA, CEAN, EAN, AN, ANS, ANST, NST, NSTA, NSTAT, NSTATE, STATE, TATE. The next item popped is T.	

2017-2018

Contest #3

5 What Doos This Program Do? Am	10 V.C	5 12
 5. What Does This Program Do? - Arr After the first nested loop is executed, the array is at the right. The second nested loop sets multiples of 2 or 3 or 5 equal to 0. Only prime numbers are left. T and the smallest is 7. The positive di 	3 5 7 9 5 8 11 14 7 11 15 19 9 14 19 24 the largest prime is 19 fference is 12.	5. 12
6. Boolean Algebra $A(A + \overline{B}) + \overline{AB}(\overline{A} + B) = AA + A\overline{B} + (A + \overline{A}) = A + A\overline{B} + \overline{A}$ $= A + A\overline{B} + \overline{A}$ $= A + A\overline{B} + \overline{A}$ $= A(1 + \overline{B}) + \overline{A}$	$\overline{\overline{A}} + \overline{B})(\overline{\overline{A}} + B)$ $\overline{\overline{A}} + \overline{AB} + \overline{\overline{AB}} + \overline{\overline{BB}}$ $+ \overline{\overline{AB}} + \overline{\overline{AB}}$ $(1 + B + \overline{B}) = A + \overline{\overline{A}} = 1$	6. 1
7. Boolean Algebra $A(\overline{B}+C) + \overline{B}(\overline{A}+\overline{C}) + C(A\overline{B}) = A\overline{B} - = (A\overline{B}) = \overline{B}(A$ $= \overline{B}(A$ If $\overline{B} + AC$, then $\overline{B} = 0 \land AC = 0$. So Therefore (0,1,0), (0,1,1) and (1,1,0)	$+AC + \overline{AB} + \overline{BC} + A\overline{BC}$ $+\overline{AB} + \overline{BC} + A\overline{BC} + AC$ $+\overline{A} + C + AC) + AC = \overline{B} + AC$ $B = 1 \text{ and both } A \wedge C \text{ cannot be 1.}$ make it FALSE.	7. (0,1,0) (0,1,1) (1,1,0)

2017-2018

American Computer Science League

Contest #3

8. Data Structures	8. C, H, I, L, O
The binary search tree has a depth of 7. The nodes at depth 6 are C, H, I, L, O. (This is the site of this year's All-Star Contest.)	
9. Data Structures The stack is constructed using LIFO as follows: F, FO, FOR, FO, FOT, FOTI, FOT, FOTE, FOTET, FOTE, FOTEH, FOTEHA, FOTEHAN, FOTEHA, FOTEHA, FOTEHIA, FOTEHIV, FOTEHIVE, FOTEHIVE, FOTEHIVE, FOTEHIVE, FOTEHIVE, FOTEHIVS, FOTEHIV, FOTEHI, FOTEHIA, FOTEHIA, FOTEHIAR, FOTEHIAR, FOTEHIA, FOTEHI, FOTEH, FOTE, The next item popped is a E. (This is ACSL's 40 th year.)	9. E
 10. Regular Expressions Given: 1*01(01)*1100* A. 0010100 - fails - must start with 01 not 00 B. 101011100 - matches C. 010101010100 - fails - missing a 1, should end with 11100 D. 1010110 - fails - should end with 1110 E. 01110 - matches 	10. B, E

American Computer Science League

2017-2018

Contest #3