1. Graph Theory The directed graph formed is shown on the right.

2. Graph Theory

0	1	0	0	1
0	0	1	1	1
1	0	0	0	1
1	0	0	0	1
0	0	1	0	0

3. Digital Electronics

The digital circuit translates to: $\overline{A B+\bar{B}}$

$$
\overline{A B+\bar{B}}=\overline{A B} \overline{\bar{B}}=(\bar{A}+\bar{B}) B=\bar{A} B+\bar{B} B=\bar{A} B+0=\bar{A} B
$$

4. Digital Electronics

The digital circuit translates to: $((\bar{A})(A+B)+\overline{B C}) \bar{C}$
$((\bar{A})(A+B)+\overline{B C}) \bar{C}=(A \bar{A}+\bar{A} B+\bar{B}+\bar{C}) \bar{C}=\bar{A} B \bar{C}+\bar{B} \bar{C}+\bar{C}$
$=\bar{C}(\bar{A} B+\bar{B}+1)=\bar{C}$
$\bar{C}=0$ and $C=1$ This makes $A=*$ and $B=*$.
This is true for 4 cases: $(*, *, 1)$
5. What Does This Program Do?

First loop places letters greater than H and not T in B .
B = "NRRNSININS". The second loop eliminates N's and S's from B and places the remaining letters in C. C $=$ "RRII". The print statement takes the first and last letters in C and concatenates them to produce RI.
4. 4
3. $\bar{A} B$
2. As shown
-
. .
6. Graph Theory

To find the number of paths of length 2 , add the entries in the square of the adjacency matrix. The sum is 24 .

7. Graph Theory

The cycles are: $\mathrm{ABDA}, \mathrm{ABDCA}, \mathrm{ADCA}, \mathrm{ADA}, \mathrm{BDB}$, and BDCB .

8. Digital Electronics

The circuit translates to: $(\bar{A}+\overline{A B}) \oplus B$

$$
\begin{aligned}
& (\bar{A}+\overline{A B}) \oplus B=\overline{(\bar{A}+\overline{A B}}) B+(\bar{A}+\overline{A B}) \bar{B}=(\overline{\bar{A}(\overline{A B})) B+(\bar{A}+(\bar{A}+\bar{B})) \bar{B}} \\
& \quad=(A A B) B+\bar{A} \bar{B}+\bar{B} \bar{B}=A B+\bar{A} \bar{B}+\bar{B}=A B+\bar{B}(\bar{A}+1)=A B+\bar{B}
\end{aligned}
$$

Note: It would have been fewer steps if the first term had been simplified first.

9. Digital Electronics

9. $(1,1,1)$

The circuit translates to: $(\bar{A}(\overline{A B}))+(\overline{(B C) C})$

$$
\begin{aligned}
& (\bar{A}(\overline{A B}))+(\overline{(B C) C})=(\bar{A}(\bar{A}+\bar{B}))+\overline{B C}=\bar{A}+\bar{A} \bar{B}+\bar{B}+\bar{C} \\
& \quad=\bar{A}+\bar{B}+\bar{C} .
\end{aligned}
$$

This is FALSE when all three terms are 0 , so $\bar{A}=0 \wedge \bar{B}=0 \wedge \bar{C}=0$.
The corresponding ordered triple is $(1,1,1)$.

10. Assembly Language

10. 13

This program converts a base ten number into a base 16 number by repeated division. The integral remainders are outputted. $4213_{10}=1075_{16}$ The sum of the digits outputted is 13 .
8. $A B+\bar{B}$
7. 6
6. 24
8.

