DATA STRUCTURE - Work Sheet

1. 02-03 C4 Data Structures

Build a binary search tree with the letters **BEAUTYANDTHEBEAST** starting with B and ending with the last T. How many nodes have 1 child?

2. 02-03 C4 Data Structures

Build a binary search tree with the letters **PINOCCHIO**. What is the depth of the tree?

3. 03-04 C4 Data Structures

Construct a binary search tree for MIRSPACESTATION. What is the depth of the tree?

4. 03-04 C4 Data Structures

Consider the following sequence of operations on an initially empty queue. What would be the next item popped? Read the statements left to right, then top to bottom.

PUSH (D),	PUSH (A),	PUSH (T),	POP (X),	PUSH (A),
POP (X),	PUSH (S),	PUSH (T),	POP (X),	POP (X),
PUSH (R),	PUSH (U),	PUSH (C),	POP (X),	POP (X),
POP (X),	PUSH (T),	PUSH (U),	PUSH (R),	POP (X),
PUSH (E)				

5. 04-05 C4 Data Structures

In the binary search tree for **PENNSYLVANIA**, how many nodes have only one child?

6. 04-05 C4 Data Structures

Given an initially empty stack and the following operations (left to right, then top to bottom):, what element would be popped next?

PUSH (B),	PUSH (E),	PUSH (N),	POP (X),	PUSH (J),
POP (X),	PUSH (A),	PUSH (M)	PUSH (J),	POP (X),
POP (X)				

7. 05-06 C4 Data Structures

How many nodes have only one child in the binary search tree of the word CONCATENATION?

8. 05-06 C4 Data Structures

What would be the next item removed from the stack formed by the following operations (left to right, then top to bottom):

PUSH(B),PUSH(O),POP(X),PUSH(O),PUSH(L),POP(X),POP(X),PUSH(E),POP(X),PUSH(A),PUSH(N),POP(X),POP(X).

9. 06-07 C4 Data Structures

How many nodes have only one child in the binary search tree of the word **GLOBALWARMING**?

10. 06-07 C4 Data Structures

Given an initially empty stack and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(T),	PUSH(A),	PUSH(Y),	POP(X),	PUSH(L),	POP(X),
POP(X),	PUSH(O),	POP(X),	PUSH(R),	PUSH(T),	PUSH(X),
POP(X)					

11. 07-08 C4 Data Structures

What is the depth of the binary search tree for WILLIAMSHAKESPEARE?

12. 07-08 C4 Data Structures

Given an initially empty stack and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(M),	PUSH(A),	PUSH(C),	POP(X),	PUSH(B),	POP(X),
POP(X),	PUSH(E),	PUSH(T),	PUSH(H),	POP(X)	

13. 08-09 C4 Data Structures

What is the depth of the binary search tree for: INDIANAJONES?

14. 08-09 C4 Data Structures

Given an initially empty queue and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(F),	PUSH(I),	PUSH(B),	POP(X),	PUSH(O),	POP(X),
POP(X),	PUSH(N),	PUSH(A),	POP(X),	PUSH(C),	PUSH(C),
POP(X),	PUSH(I)				

15. **09-10 C4 Data Structures**

In the binary search tree for **KEYSTONESTATE**, how many nodes have only 1 child?

16. 09-10 C4 Data Structures

Define a new operation SWP(x): swap x items from the pop end with x items from the push end. Given an initially empty queue and the following sequence of operations, what would be the next POPPED element?

PUSH(A),	PUSH(B),	PUSH(C),	SWP(1) ,	POP(X),
PUSH(D),	POP(X),	SWP(1) ,	PUSH(E)	

17. 10-11 C4 Data Structures

Construct the binary search tree for the word below. How many nodes have only one left child?

KNOWLEDGEABLE

18. 10-11 C4 Data Structures

The command REV reverses the order of the elements. Given an initially empty stack and the following sequence of operations, what would be the next POPPED element?

PUSH(S),	PUSH(P),	PUSH(A),	POP(X),	REV,	PUSH(C),
PUSH(E),	POP(X),	REV,	PUSH(S),	POP(X),	REV

19. 11-12 C4 Data Structures

What is the depth of the binary search tree for: PENNSYLVANIA?

20. 11-12 C4 Data Structures

Given an initially empty queue and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(L),	PUSH(I),	PUSH(B),	POP(X),	POP(X),	PUSH(E),
PUSH(R),	POP(X),	POP(X),	PUSH(T),	PUSH(Y)	

21. 12-13 C4 Data Structures

How many nodes have only one child in the binary search tree for DUKEUNIVERSITY?

22. 12-13 C4 Data Structures

Given an initially empty queue and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(E),	PUSH(N),	PUSH(L),	POP(X),	PUSH(O),	POP(X),
POP(X),	PUSH(E),	POP(X),	PUSH(H),	PUSH(S),	POP(X)

23. 13-14 C4 Data Structures

List the nodes that are at depth 6 in the binary search tree for: **DENVERCOLORADO**

24. 13-14 C4 Data Structures

Given an initially empty stack and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(R),	PUSH(O),	PUSH(C),	PUSH(K),	POP(X),	POP(X),
PUSH(Y),	PUSH(M),	POP(X),	PUSH(T),	PUSH(N),	POP(X),
POP(X)					

25. 14-15 C4 Data Structures

Create a binary search tree using the string **DISNEYWORLD**. How many nodes have just one child?

26. 14-15 C4 Data Structures

Given the following commands on an initially empty queue, what is next item that would be POPPED?

Read the statements left to right, then top to bottom.

PUSH(S);	PUSH(U);	PUSH(N);	POP(X);	PUSH(S);	PUSH(H);
PUSH(I);	POP(X);	PUSH(N);	PUSH(E);	PUSH(S);	PUSH(T);
POP(X);	PUSH(A);	PUSH(T);	PUSH(E);	POP(X);	POP(X);
POP(X);	POP(X);	POP(X)			

27. 15-16 C4 Data Structures

How many nodes have only one child in the binary search tree for NASHUAHIGHSCHOOL?

28. 15-16 C4 Data Structures

Given an initially empty queue and the following sequence of operations, what would be the next POPPED element? Read the statements left to right, then top to bottom.

PUSH(N), PUSH	(A), PUS	H(T), PO	P(X), PO	P(X), PUSI	H(H),
P	USH(A), PO	PP(X) , PUS	H(N), PO	P(X), PO	P(X), PUSI	H(H),
P	USH(A),	POP(X), PU	SH(L), PO	P(X), PUS	SH(E), POP((X)