Digital Electronics

See Boolean Algebra for a description of the category as well as references.

NAME	GRAPHICAL SYMBOL	ALGEBRAIC EQN	TRUTH TABLE
BUFFER		$X=A$	$\begin{array}{ll} A & X \\ \hline 0 & 0 \\ 1 & 1 \end{array}$
NOT	A	$X=\bar{A}$	$\begin{array}{ll} \mathrm{A} & X \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
AND		$X=A B$ or $A^{*} B$	A B X 0 0 0 0 1 0 1 0 0 1 1 1
NAND		$X=\overline{A B}$ or $\overline{A * B}$	A B X 0 0 1 0 1 1 1 0 1 1 1 0
OR		$X=A+B$	A B X 0 0 0 0 1 1 1 0 1 1 1 1
NOR		$X=\overline{A+B}$	A B X 0 0 1 0 1 0 1 0 0 1 1 0
$\begin{aligned} & \text { EXCLUSIVE-OR } \\ & \text { (XOR) } \end{aligned}$		$X=A \oplus B$	A B X 0 0 0 0 1 1 1 0 1 1 1 0
EQUIVALENCE (XNOR)		$X=\overline{A \oplus B}$	B X 0 0 1 0 1 0 1 0 0 1 1 1

Digital Electronics

Find all ordered triplets $(A, B, C$ which make the following circuit FALSE: $\quad(1,1,0)$

Which circuit produces the most TRUE values?
II

III

IV

Redraw the diagram using the fewest number of gates possible.

The circuit translates to
$X \bar{Y}+\bar{X} Y=X \oplus Y$

Digital Electronics

Simplify the Boolean expression represented by this circuit using the fewest numbers of parentheses,

$$
\bar{A}+\bar{B}=\overline{A B}
$$

How many ordered triples make the circuit FALSE?

A

в

c

Translate the following circuit to a Boolean expression and simplify the expression.

$$
\begin{aligned}
& (\overline{A B})(\overline{A+B})(C)=(\bar{A}+\bar{B})(\bar{A} \bar{B})(C) \\
& =(\bar{A} \bar{B}+\bar{A} \bar{B})(C)=\bar{A} \bar{B} C
\end{aligned}
$$

