1. 02-03 C3 Digital Electronics

$$\overline{\overline{AB}\,\overline{B}+C} = \overline{\overline{AB}+\overline{B}+C} = AB+B+C = B(A+1)+C = B+C \tag{*, 0, 0}$$
OR
$$(1,0,0) \quad (0,0,0)$$

2. 02-03 C3 Digital Electronics

3. 03-04 C3 Digital Electronics

The circuit translates to $\overline{A}B + \overline{B}$ (1,1) $\overline{A}B + \overline{B}$ \boldsymbol{A} ABВ A В 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0

4. 03-04 C3 Digital Electronics

The circuit translates to: $\overline{\overline{AAB}}\overline{B+C}$. Parentheses are not required and should not be part of the answer. AND operation symbols (* or •) may be included.

2

5. **04-05 C3 Digital Electronics**

The diagram translates to:

$$\overline{A}B + B = 1 \Rightarrow \overline{A}B + B = 0 \Rightarrow \overline{A}B = 0 \text{ AND } B = 0$$

Therefore A = *. There are 2 ordered pairs (0, 0) and (1,0)

NOHO ACSL: North Hollywood American Computer Science Leaders

6. **04-05 C3 Digital Electronics**

The diagram translates to:

(1,1,0) , (0,1,0)

$$\overline{(A+B)(B\overline{C})} = 0 \Rightarrow (A+B)(B\overline{C}) = 1 \Rightarrow$$
 $A+B=1 \text{ AND } B\overline{C} = 1 \Rightarrow B=1 \text{ AND } C=0$

Since B = 1 then A = *. There are 2 ordered triples (*, 1, 0).

7. 05-06 C3 Digital Electronics

The circuit translates to

$$: \overline{\overline{A} + AB} = \overline{\overline{A}} * \overline{AB} = A(\overline{A} + \overline{B}) = A\overline{A} + A\overline{B} = 0 + A\overline{B} = A\overline{B}$$

$$A\overline{B}$$

8. 05-06 C3 Digital Electronics

The circuit translates to: $\overline{\overline{AB} + B + C}$. No parentheses are required.

$$\overline{\overline{A}B+B+C}$$

9. 06-07 C3 Digital Electronics

The circuit translates as follows:

$$\overline{\overline{A}(A+B)} + \overline{B\overline{C}} + \overline{D}$$

$$\overline{\overline{A}(A+B)} + \overline{B}\overline{\overline{C}} + D$$

10. 06-07 C3 Digital Electronics

The circuit translates to
$$\overline{(AB)(B+C)}=1 \Rightarrow \overline{ABB+ABC}=1 \Rightarrow$$

 $ABB+ABC=0 \Rightarrow AB+ABC=0 \Rightarrow AB(1+C)=0 \Rightarrow AB=0$

6

If
$$A = 0$$
 then $B = *$ and $C = *$

If
$$B = 0$$
 then $A = *$ and $C = *$

11. **07-08 C3 Digital Electronics**

The circuit translates as follows:

$$(\overline{A}(A+B))\overline{B+C}$$

$$(\overline{A}(A+B))\overline{B+C} = (\overline{A}A+\overline{A}B)\overline{B}\overline{C}$$

$$= (0+\overline{A}B)\overline{B}\overline{C}$$

$$= \overline{A}B\overline{B}\overline{C} = 0$$

12. 07-08 C3 Digital Electronics

The circuit translates to
$$\overline{AB} + \overline{B}$$

$$\overline{AB} + \overline{B} = \overline{A} + \overline{B} + \overline{B} = \overline{A} + \overline{B}$$
 If $A = 0$, then $1 + \overline{B} = 1$ Hence $B = *$ \therefore (0,*) If $A = 1$, then $0 + \overline{B} = 1$ So $\overline{B} = 1 \Rightarrow B = 0$ \therefore (1,0)

(0,0), (0,1), (1,0)

13. 08-09 C3 Digital Electronics

The circuit translates as follows:
$$(\overline{A+B})(B+C)$$

 $(\overline{A+B})(B+C) = \overline{AB}(B+C) = \overline{ABB} + \overline{ABC}$
 $= 0 + \overline{ABC} = \overline{ABC}$
 $\overline{ABC} = 1 \Rightarrow \overline{A} = 1 \land \overline{B} = 1 \land C = 1 \therefore (0,0,1) \text{ makes it TRUE}$

1

14. 08-09 C3 Digital Electronics

The circuit translates as follows:
$$\overline{\overline{A} + AB}$$

 $\overline{\overline{A} + AB} = \overline{\overline{A}} \overline{AB} = A(\overline{A} + \overline{B}) = A\overline{A} + A\overline{B} = 0 + A\overline{B} = A\overline{B}$

 $A\overline{B}$

15. **09-10 C3 Digital Electronics**

The circuit translates as follows:

$$\overline{A}\overline{B}\overline{C}$$

$$(\overline{A} + B)(\overline{B} + \overline{C}) = (\overline{A} + B)(\overline{B} \overline{C})$$

$$= \overline{A} \overline{B} \overline{C} + B \overline{B} \overline{C}$$

$$= \overline{A} \overline{B} \overline{C}$$

16. **09-10 C3 Digital Electronics**

The circuit translates to

(1,0,0), (0,0,0)

$$\overline{\overline{AB} + (B+C)} = 1 \qquad \Rightarrow \overline{AB} + B + C = 0$$
$$\Rightarrow \overline{AB} = 0 \land B = 0 \land C = 0$$
$$\Rightarrow A = * \qquad \therefore (*,0,0)$$

17. 10-11 C3 Digital Electronics

The circuit translates as follows: $(\overline{A}+B)B = \overline{A}B + B = B(\overline{A}+1) = B$

18. 10-11 C3 Digital Electronics

The circuit translates to $\overline{AB+\overline{C}}$ (0,0,1), (0,1,1), (1,0,1) $\overline{AB+\overline{C}}=1 \Rightarrow AB+\overline{C}=0$ $\Rightarrow AB=0 \wedge \overline{C}=0$ $\Rightarrow AB=0 \wedge C=1$ If A=0, then B=*. If A=1, then B=0.

19. 11-12 C4 Digital Electronics

$$\overline{(AB)(B+C)} = \overline{AB} + \overline{B+C} = \overline{A} + \overline{B} + \overline{B} \overline{C} = \overline{A} + \overline{B}(1+\overline{C}) = \overline{A} + \overline{B}$$
(1,1,1), (1,1,0)
If $\overline{A} + \overline{B} = 0$, then $\overline{A} = 0 \land \overline{B} = 0$. So $A = 1 \land B = 1 \land C = *$.

20. 11-12 C4 Digital Electronics

21. 12-13 C4 Digital Electronics

(1,1)

22. 12-13 C4 Digital Electronics

The circuit translates to: $\overline{A} + A\overline{B}$

A	В	\overline{A}	\overline{B}	$A\overline{B}$	$\overline{A} + A\overline{B}$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	1	0	0	0	0

Therefore, the ordered pairs that make it TRUE are (0,0), (0,1), (1,0).

23. 13-14 C4 Digital Electronics

The circuit translates to the Boolean expression:
$$\overline{(\overline{A} + AB)B}$$

$$\overline{(\overline{A} + AB)B} = \overline{\overline{A} + AB} + \overline{B} = \overline{\overline{A}}(\overline{AB}) + \overline{B} = A(\overline{A} + \overline{B}) + \overline{B}$$

$$= A\overline{A} + A\overline{B} + \overline{B} = \overline{B}(A+1) = \overline{B}$$

24. 13-14 C4 Digital Electronics

The circuit translates to: $\overline{(\overline{A}+AB)}(B+C)\overline{C}$ $\overline{(\overline{A}+AB)}(B+C)\overline{C}$

3

Note the first two factors may be commuted and the third may come first and the addends within the parentheses may be commuted.