Digital Electronics - Worksheet Answer

1. 02-03 C3 Digital Electronics
$\overline{\overline{A B} \overline{B+C}}=\overline{\overline{A B}+\overline{B+C}}=A B+B+C=B(A+1)+C=B+C$
OR
$(1,0,0) \quad(0,0,0)$
2. 02-03 C3 Digital Electronics

The circuit is represented by $\overline{\bar{A} B+C \bar{D}}$.
a. $(0,1,0,1)=\operatorname{not}(1+0)=0$
c, d and e
b. $(1,0,1,0)=\operatorname{not}(0+1)=0$
c. $(1,1,1,1)=\operatorname{not}(0+0)=1$
d. $(1,0,0,1)=\operatorname{not}(0+0)=1$
e. $(0,0,1,1)=\operatorname{not}(0+0)=1$
3. 03-04 C3 Digital Electronics

The circuit translates to $\bar{A} B+\bar{B}$

A	B	\bar{A}	$\bar{A} B$	\bar{B}	$\bar{A} B+\bar{B}$
0	0	1	0	1	1
0	1	1	1	0	1
1	0	0	0	1	1
1	1	0	0	0	0

4. 03-04 C3 Digital Electronics

The circuit translates to: $\overline{\overline{\bar{A} A B}} \overline{B+C}$. Parentheses are not required and should not be part of the answer. AND operation symbols (* or •) may be included.

5. 04-05 C3 Digital Electronics

The diagram translates to:

$$
\overline{\bar{A} B+B=1} \Rightarrow \bar{A} B+B=0 \Rightarrow \bar{A} B=0 \text { AND } B=0
$$

Therefore $A=*$. There are 2 ordered pairs $(0,0)$ and $(1,0)$

Digital Electronics - Worksheet Answer

6. 04-05 C3 Digital Electronics

The diagram translates to:

$$
\begin{align*}
& \overline{(A+B)(B \bar{C})}=0 \Rightarrow(A+B)(B \bar{C})=1 \Rightarrow \tag{1,1,0}\\
& A+B=1 \text { AND } B \bar{C}=1 \Rightarrow B=1 \text { AND } C=0
\end{align*}
$$

Since $B=1$ then $A=*$. There are 2 ordered triples ($*, 1,0$).

7. 05-06 C3 Digital Electronics

The circuit translates to
$: \overline{\bar{A}+A B}=\overline{\bar{A}} * \overline{A B}=A(\bar{A}+\bar{B})=A \bar{A}+A \bar{B}=0+A \bar{B}=A \bar{B}$
$A \bar{B}$
8. 05-06 C3 Digital Electronics

The circuit translates to: $\overline{\bar{A} B+B+C}$. No parentheses are required. $\overline{\bar{A} B+B+C}$
9. 06-07 C3 Digital Electronics

The circuit translates as follows:

$$
\overline{\bar{A}(A+B)}+\overline{B \bar{C}+D} \quad \overline{\bar{A}(A+B)}+\overline{B \bar{C}+D}
$$

10. 06-07 C3 Digital Electronics

The circuit translates to $\overline{(A B)(B+C)}=1 \Rightarrow \overline{A B B+A B C}=1 \Rightarrow$
$A B B+A B C=0 \Rightarrow A B+A B C=0 \Rightarrow A B(1+C)=0 \Rightarrow A B=0$
If $A=0$ then $B={ }^{*}$ and $C=$ *
If $B=0$ then $A=$ * and $C=$ *
11. 07-08 C3 Digital Electronics

The circuit translates as follows:

$$
\begin{align*}
& (\bar{A}(A+B)) \overline{B+C} \tag{0}\\
& (\bar{A}(A+B)) \overline{B+C}=(\bar{A} A+\bar{A} B) \bar{B} \bar{C} \\
& =(0+\bar{A} B) \bar{B} \bar{C} \\
& =\bar{A} B \bar{B} \bar{C}=0
\end{align*}
$$

Digital Electronics - Worksheet Answer

12. 07-08 C3 Digital Electronics

The circuit translates to $\overline{A B}+\bar{B}$
$(0,0),(0,1),(1,0)$
$\overline{A B}+\bar{B}=\bar{A}+\bar{B}+\bar{B}=\bar{A}+\bar{B}$
If $A=0$, then $1+\bar{B}=1 \quad$ Hence $B=* \quad \therefore\left(0,{ }^{*}\right)$
If $A=1$, then $0+\bar{B}=1 \quad$ So $\bar{B}=1 \Rightarrow B=0$
13. 08-09 C3 Digital Electronics

The circuit translates as follows: $\quad(\overline{A+B})(B+C)$
1
$(\overline{A+B})(B+C)=\bar{A} \bar{B}(B+C)=\bar{A} B \bar{B}+\bar{A} \bar{B} C$
$=0+\bar{A} \bar{B} C=\bar{A} \bar{B} C$
$\bar{A} \bar{B} C=1 \Rightarrow \bar{A}=1 \wedge \bar{B}=1 \wedge C=1 \quad \therefore(0,0,1)$ makes it TRUE
14. 08-09 C3 Digital Electronics

The circuit translates as follows: $\overline{\bar{A}+A B} \quad A \bar{B}$
$\overline{\bar{A}+A B}=\overline{\bar{A}} \overline{A B}=A(\bar{A}+\bar{B})=A \bar{A}+A \bar{B}=0+A \bar{B}=A \bar{B}$
15. 09-10 C3 Digital Electronics

The circuit translates as follows:

$$
\bar{A} \bar{B} \bar{C}
$$

$$
\begin{aligned}
(\bar{A}+B)(\overline{B+C}) & =(\bar{A}+B)(\bar{B} \bar{C}) \\
& =\bar{A} \bar{B} \bar{C}+B \bar{B} \bar{C} \\
& =\bar{A} \bar{B} \bar{C}
\end{aligned}
$$

16. 09-10 C3 Digital Electronics

The circuit translates to
$(1,0,0),(0,0,0)$

$$
\begin{align*}
\overline{\bar{A} B+(B+C)}=1 & \Rightarrow \bar{A} B+B+C=0 \\
& \Rightarrow \bar{A} B=0 \wedge B=0 \wedge C=0 \\
& \Rightarrow A=* \quad \therefore(*, 0,0) \tag{*,0,0}
\end{align*}
$$

Digital Electronics - Worksheet Answer

17. 10-11 C3 Digital Electronics

The circuit translates as follows: $\begin{array}{ll} & (\bar{A}+B) B \\ & (\bar{A}+B) B=\bar{A} B+B=B(\bar{A}+1)=B\end{array} \quad B$
18. 10-11 C3 Digital Electronics

The circuit translates to $\overline{A B+\bar{C}}$
$(0,0,1),(0,1,1),(1,0,1)$

$$
\begin{aligned}
\overline{A B+\bar{C}}=1 & \Rightarrow A B+\bar{C}=0 \\
& \Rightarrow A B=0 \wedge \bar{C}=0 \\
& \Rightarrow A B=0 \wedge C=1
\end{aligned}
$$

If $A=0$, then $B=*$. If $A=1$, then $B=0$.
19. 11-12 C4 Digital Electronics
$\overline{(A B)(B+C)}=\overline{A B}+\overline{B+C}=\bar{A}+\bar{B}+\bar{B} \bar{C}=\bar{A}+\bar{B}(1+\bar{C})=\bar{A}+\bar{B}$
If $\bar{A}+\bar{B}=0$, then $\bar{A}=0 \wedge \bar{B}=0$. So $A=1 \wedge B=1 \wedge C=*$.
20. 11-12 C4 Digital Electronics

The circuit simplifies to:
$A B \bar{C}$
$\overline{(B+C) A}+C=(\overline{(\overline{(B+C) A})}(\bar{C})=(A B+A C) \bar{C}=A B \bar{C}+A C \bar{C}=A B \bar{C}$

21. 12-13 C4 Digital Electronics

Digital Electronics - Worksheet Answer

22. 12-13 C4 Digital Electronics

The circuit translates to: $\bar{A}+A \bar{B}$

A	B	\bar{A}	\bar{B}	$A \bar{B}$	$\bar{A}+A \bar{B}$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	1	0	0	0	0

Therefore, the ordered pairs that make it TRUE are $(0,0),(0,1),(1,0)$.
23. 13-14 C4 Digital Electronics

The circuit translates to the Boolean expression: $\overline{(\bar{A}+A B) B}$
\bar{B}

$$
\begin{aligned}
\overline{(\bar{A}+A B) B}=\overline{\bar{A}}+A B+\bar{B} & =\overline{\bar{A}}(\overline{A B})+\bar{B}=A(\bar{A}+\bar{B})+\bar{B} \\
& =A \bar{A}+A \bar{B}+\bar{B}=\bar{B}(A+1)=\bar{B}
\end{aligned}
$$

24. 13-14 C4 Digital Electronics

The circuit translates to: $\overline{(\overline{A+A B})(B+C)} \bar{C}$
$\overline{(\overline{A+A B})(B+C)} \bar{C}$
Note the first two factors may be commuted and the third may come first and the addends within the parentheses may be commuted.

