Graph Theory Solutions

1. 02-03 C3 Graph Theory

A cycle is a simple path with no vertices repeated except for the first and last vertex point. The following cycles exist:
ABA, ADA, ABDA, ABEA, ADCBA, BDCB, BEDCB, ABEDA, ADCBEA

2. 02-03 C3 Graph Theory

The adjacency matrix is:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
\mathbf{A}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
\mathbf{B}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
\mathbf{C}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
\mathbf{D}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
\mathbf{E}	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$

3. 03-04 C3 Graph Theory

The adjacency matrix squared is:

	A	B	C	D
A	0	1	0	0
B	0	0	1	1
C	1	1	0	0
D	0	0	1	0

1 \& 1 \& 1 \& 0

0 \& 1 \& 1 \& 1

1 \& 1 \& 0 \& 0\end{array}\right|\right.\)

The number of paths from A is found by summing the top row of the squared matrix.

4. 03-04 C3 Graph Theory

The simple paths are: $\mathrm{ABC}, \mathrm{ABD}, \mathrm{BCD}, \mathrm{CBD}, \mathrm{BDA}, \mathrm{DAB}, \mathrm{CDA}$

5. 04-05 C3 Graph Theory

The adjacency matrix is:

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
\mathbf{A}	0	1	1	0
\mathbf{B}	0	1	0	1
\mathbf{C}	0	0	0	1
\mathbf{D}	1	1	0	0

6. 04-05 C3 Graph Theory

Squaring the adjacency matrix gives all the paths of length 2
from each vertex.
$\left|\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right|^{2}=\left|\begin{array}{lll}1 & 2 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

The sum of the elements in the squared matrix is 7

7. 05-06 C3 Graph Theory

The adjacency matrix is:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

8. 05-06 C3 Graph Theory

The graph is similar to:

9. 06-07 C3 Graph Theory

The adjacency matrix squared is:
8

$$
\left|\begin{array}{lll}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{1} & \mathbf{0}
\end{array}\right|^{2}=\left\lvert\, \begin{array}{lll}
\mathbf{2} & \mathbf{2} & \mathbf{1} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1} & \mathbf{1} & \mathbf{1}
\end{array}\right.
$$

Summing up all of the entries yields 8 total paths of length 2 .

10. 06-07 C3 Graph Theory

The adjacency matrix is:

As shown
As shown

Arrows are drawn from the first vertex listed to the second
As shown one. There are 4 vertices and 6 edges.

12. 07-08 C3 Graph Theory

The adjacency matrix is:
$\left|\begin{array}{lllll}\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0}\end{array}\right|$

13. 08-09 C3 Graph Theory

Squaring an adjacency matrix produces all the paths of length 2.
Adding the entries gives the number of paths of length 2.
$\left|\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right|=\left|\begin{array}{llll}1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1\end{array}\right|$

14. 08-09 C3 Graph Theory

The adjacency matrix is:
$\left|\begin{array}{lllll}0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right|$

Arrows are drawn from the first vertex listed to the second one. There are 5 vertices and 11 edges.
Adjacency matrix as shown in the answer column.

0	1	0	0	1
0	0	1	0	1
0	0	1	1	1
1	0	1	0	0
1	1	0	0	0

16. 09-10 C3 Graph Theory

The adjacency matrix squared is:
2
$\left|\begin{array}{llllllll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 2 & 2 & 0\end{array}\right|$
The sum of all of the entries is 12 .

17. 10-11 Graph Theory

Arrows are drawn from the first vertex listed to the second one.
There are 4 vertices and 7 edges.

18. 10-11 Graph Theory

The adjacency matrix is squared B to D has 4 paths of length 2 .
$\left|\begin{array}{llll}\mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1}\end{array}\right|=\left|\begin{array}{llll}\mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{3} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{4} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{2}\end{array}\right|$

The graph is shown below:
As shown

20. 11-12 C3 Graph Theory

The adjacency matrix is shown below:

1	1	0	1	0
0	0	1	0	0
0	0	0	0	0
1	1	1	0	0
1	0	0	1	0

21. 12-13 C3 Graph Theory

The adjacency matrix is:
$\left|\begin{array}{lllll}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0}\end{array}\right|$

22. 12-13 C3 Graph Theory

The adjacency matrix squared is:
$\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right|^{2}=\left|\begin{array}{llll}2 & 4 & 2 & 3 \\ 2 & 4 & 2 & 3 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right|$

Adding the second row results in 11 paths from vertex B.

23. 13-14 C3 Graph Theory

The graph is similar to this:

The adjacency matrix is:
As shown
$\left|\begin{array}{lllll}\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0}\end{array}\right|$

25. 14-15 C3 Graph Theory

The graph must be similar to:

As shown

26. 14-15 C3 Graph Theory

The adjacency matrix is:

$$
\left|\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0
\end{array}\right|
$$

27. 15-16 C3 Graph Theory

The graph is similar the one below:

28. 15-16 C3 Graph Theory

The adjacency matrix is:

