Graph Theory Solutions

1. 02-03 C3 Graph Theory

A cycle is a simple path with no vertices repeated except for the first and last vertex point. The following cycles exist: ABA, ADA, ABDA, ABEA, ADCBA, BDCB, BEDCB, ABEDA, ADCBEA

2. 02-03 C3 Graph Theory

The adjacency matrix is:

	Α	B	С	D	Ε
Α	0	1	0	1	0
В	1	0	0	1	1
С	0	1	0	0	0
D	1	0	1	0	0
Е	1	0	0	1	0

3. 03-04 C3 Graph Theory

The adjacency matrix squared is:

	А	В	С	D							
А	0	1	0	0	2		0	0	1	1	
В	0	0	1	1		=	1	1	1	0	
С	1	1	0	0			0	1	1	1	
D	0	0	1	0			1	1	0	0	

The number of paths from A is found by summing the top row of the squared matrix.

4. 03-04 C3 Graph Theory

The simple paths are: ABC, ABD, BCD, CBD, BDA, DAB, CDA

5. 04-05 C3 Graph Theory

The adjacency matrix is:

	Α	B	С	D
Α	0	1	1	0
B	0	1	0	1
С	0	0	0	1
D	1	1	0	0

As shown

2

7

~

15

9

6. 04-05 C3 Graph Theory

Squaring the adjacency matrix gives all the paths of length 2 from each vertex.

- 11		C .1	1	· .	• .1	-	1		•
	0	1	0			0	0	1	
	0	0	1		=	0	1	0	
	1	1	1	2		1	2	2	

The sum of the elements in the squared matrix is 7

7. 05-06 C3 Graph Theory

The adjacency matrix is:

0	1	1	1	0
0	1	1	0	0
1	1	0	1	0
0	1	0	0	1
1	0	0	0	0

8. 05-06 C3 Graph Theory

The graph is similar to:

9. 06-07 C3 Graph Theory

The adjacency matrix squared is:

1	1	1	2		2	2	1
0	0	0		=	0	0	0
1	1	0			1	1	1

Summing up all of the entries yields 8 total paths of length 2.

10. 06-07 C3 Graph Theory

The adjacency matrix is:

1	1	0	1	1	
	0	0	1	1	
	1	0	1	0	
	1	0	0	0	

As shown

As shown

8

As shown

7

11. 07-08 C3 Graph Theory

Arrows are drawn from the first vertex listed to the second one. There are 4 vertices and 6 edges.

12. 07-08 C3 Graph Theory

The adjacency matrix is:

0	i	1	0	1
0	0	1	0	0
1	0	1	1	0
0	0	0	0	1
0	0	0	1	0

13. 08-09 C3 Graph Theory

Squaring an adjacency matrix produces all the paths of length 2. Adding the entries gives the number of paths of length 2. =

14. 08-09 C3 Graph Theory

The adjacency matrix is:

 As shown

As shown

15. 09-10 C3 Graph Theory

Arrows are drawn from the first vertex listed to the second one. There are 5 vertices and 11 edges. Adjacency matrix as shown in the answer column.

0	1	0	0	1
0	0	1	0	1
0	0	1	1	1
1	0	1	0	0
1	1	0	0	0

16. 09-10 C3 Graph Theory

The adjacency matrix squared is:

					2				
	0	1	1	0		0	1	2	0
	0	0	1	0		0	1	1	0
	0	1	1	0	=	0	1	2	0
	1	0	1	0		0	2	2	0
۱.			c.	11 - 4	C 41			•	10

The sum of all of the entries is 12.

17. 10-11 Graph Theory

Arrows are drawn from the first vertex listed to the second one. There are 4 vertices and 7 edges.

18. 10-11 Graph Theory

T	ne adj	acenc	y mat	rix is s	quared B to	D has	s 4 pat	hs of l	ength	2.	4
	1	1	0	1	2	2	3	1	3		
	1	1	1	1	=	2	3	1	4		
	0	0	0	1		0	1	0	1		
	0	1	0	1		1	2	1	2		

12

19. 11-12 C3 Graph Theory

The graph is shown below:

20. **11-12 C3 Graph Theory**

The adjacency matrix is shown below:

1	1	0	1	0
0	0	1	0	0
0	0	0	0	0
1	1	1	0	0
1	0	0	1	0

21. 12-13 C3 Graph Theory

The adjacency matrix is:

0	0	1	1	1
1	1	1	0	0
1	0	0	1	1
0	0	0	0	0
0	0	1	1	0

22. 12-13 C3 Graph Theory

The adjacency matrix squared is: 1 =

Adding the second row results in 11 paths from vertex B.

23. 13-14 C3 Graph Theory

The graph is similar to this:

As shown

As shown

As shown

24. 13-14 C3 Graph Theory

The adjacency matrix is:

25. 14-15 C3 Graph Theory

The graph must be similar to:

A B C C

26. 14-15 C3 Graph Theory

The adjacency matrix is:

0	1	1	1	1
1	0	1	1	0
0	1	1	1	1
1	1	1	0	0
1	0	1	1	0

27. 15-16 C3 Graph Theory

The graph is similar the one below:

28. 15-16 C3 Graph Theory

The adjacency matrix is:

0	1	1	1	0
0	1	1	0	0
1	1	0	1	0
0	0	0	0	1
1	1	0	1	0

As shown

As shown

As shown

As shown