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LISP Programming 
 

LISP is one of the simplest computer languages in terms of syntax and semantics, and also one of the 

most powerful.  It was developed in the mid-1950’s by John McCarthy at M.I.T. as a “LISt Processing 

language”.  Today, it is used for virtually all Artificial Intelligence programs and is the environment of 

choice for applications which require a powerful interactive working environment.  LISP presents a 

very different way to think about programming from the “algorithmic” languages, such as BASIC, 

Fortran and Pascal.  

As its name implies, the basis of LISP is a list.  One constructs a list by enumerating elements inside a 

pair of parentheses.  For example, here is a list with four elements (the second element is also a list): 

(23 (this is easy) hello 821) 

All statements in LISP are function calls with the following syntax: (function arg1 arg2 arg3 … argn).  To 

evaluate a LISP statement, each of the arguments (possibly functions themselves) are evaluated, and 

then the function is invoked with the arguments.  For example, (MULT (ADD 2 3) (ADD 1 4 2)) has a 

value of 35, since (ADD 2 3) has a value of 5, (ADD 1 4 2) has a value of 7, and (MULT 5 7) has a 

value of 35.  Some functions have an arbitrary number of arguments; others require a fixed number.  

All statements return a value, which is either an atom or a list.  

 

FUNCTION RESULT 

(ADD x1 x2 …) sum of all arguments 

(MULT x1 x2 …) product of all arguments 

(SUB a b) a-b 

(DIV a b) a/b 

(SQUARE a) a*a 

(EXP a n) an 

(EQ a b) true if a and b are equal, NIL otherwise 

(POS a) true if a is positive, NIL otherwise 

(NEG a) true if a is negative, NIL otherwise 

 

Some examples of these functions are as follows: 

 

STATEMENT VALUE 

(ADD (EXP 2 3) (SUB 4 1) (DIV 54 4)) 24.5 

(SUB (MULT 3 2) (SUB 12 (ADD 2 2))) -2 

(ADD (SQUARE 3) (SQUARE 4)) 25 

 



 

NOHO ACSL: North Hollywood American Computer Science Leaders 
 

 

LISP Programming - Worksheet 
 

1. 01-02 C1 Lisp Programming        40 

Evaluate:  (ADD (SUB 4 5) (ADD 6 3) (MULT 4 8)) 

  

 

2. 03-04 C1 Lisp Programming        -10 

Evaluate:  (MULT (ADD 2 3) (SUB 4 6)) 

 

 

3. 04-05 C1 Lisp Programming        1296 

Evaluate:  (EXP (DIV (MULT (ADD 2 (SUB 4 2)) 3) 2) 4) 

 

  

4. 05-06 C1 Lisp Programming        4 

Evaluate:  (DIV (MULT (ADD 2 3) (SQUARE 2)) (SUB (EXP 2 3) (ADD 2 1))) 

 

 

5. 06-07 C1 Lisp Programming        2 

Evaluate:  (DIV (MULT (ADD 1 4 5) (SUB 7 2)) (EXP 5 2))       

 

 

6. 07-08 C1 Lisp Programming        14 

Evaluate the following expression: 

(ADD (ADD 3 4) (SUB 5 2) (MULT 3 2) (EXP 2 3)) 

 

 

7. 08-09 C1 Lisp Programming        5 

Evaluate the following expression: 

(DIV (ADD (ADD 3 4) (MULT 4 2)) (SUB 8 5))  

 

 

8. 09-10 C1 Lisp Programming        27 

Evaluate the following expression: 

(ADD (SUB 9 5) (EXP 2 3) (MULT (DIV 9 3) 5)) 

 


