

NOHO ACSL: North Hollywood American Computer Science Leaders

LISP Programming

LISP is one of the simplest computer languages in terms of syntax and semantics, and also one of the

most powerful. It was developed in the mid-1950’s by John McCarthy at M.I.T. as a “LISt Processing

language”. Today, it is used for virtually all Artificial Intelligence programs and is the environment of

choice for applications which require a powerful interactive working environment. LISP presents a

very different way to think about programming from the “algorithmic” languages, such as BASIC,

Fortran and Pascal.

As its name implies, the basis of LISP is a list. One constructs a list by enumerating elements inside a

pair of parentheses. For example, here is a list with four elements (the second element is also a list):

(23 (this is easy) hello 821)

All statements in LISP are function calls with the following syntax: (function arg1 arg2 arg3 … argn). To

evaluate a LISP statement, each of the arguments (possibly functions themselves) are evaluated, and

then the function is invoked with the arguments. For example, (MULT (ADD 2 3) (ADD 1 4 2)) has a

value of 35, since (ADD 2 3) has a value of 5, (ADD 1 4 2) has a value of 7, and (MULT 5 7) has a

value of 35. Some functions have an arbitrary number of arguments; others require a fixed number.

All statements return a value, which is either an atom or a list.

FUNCTION RESULT

(ADD x1 x2 …) sum of all arguments

(MULT x1 x2 …) product of all arguments

(SUB a b) a-b

(DIV a b) a/b

(SQUARE a) a*a

(EXP a n) an

(EQ a b) true if a and b are equal, NIL otherwise

(POS a) true if a is positive, NIL otherwise

(NEG a) true if a is negative, NIL otherwise

Some examples of these functions are as follows:

STATEMENT VALUE

(ADD (EXP 2 3) (SUB 4 1) (DIV 54 4)) 24.5

(SUB (MULT 3 2) (SUB 12 (ADD 2 2))) -2

(ADD (SQUARE 3) (SQUARE 4)) 25

NOHO ACSL: North Hollywood American Computer Science Leaders

LISP Programming - Worksheet

1. 01-02 C1 Lisp Programming 40

Evaluate: (ADD (SUB 4 5) (ADD 6 3) (MULT 4 8))

2. 03-04 C1 Lisp Programming -10

Evaluate: (MULT (ADD 2 3) (SUB 4 6))

3. 04-05 C1 Lisp Programming 1296

Evaluate: (EXP (DIV (MULT (ADD 2 (SUB 4 2)) 3) 2) 4)

4. 05-06 C1 Lisp Programming 4

Evaluate: (DIV (MULT (ADD 2 3) (SQUARE 2)) (SUB (EXP 2 3) (ADD 2 1)))

5. 06-07 C1 Lisp Programming 2

Evaluate: (DIV (MULT (ADD 1 4 5) (SUB 7 2)) (EXP 5 2))

6. 07-08 C1 Lisp Programming 14

Evaluate the following expression:

(ADD (ADD 3 4) (SUB 5 2) (MULT 3 2) (EXP 2 3))

7. 08-09 C1 Lisp Programming 5

Evaluate the following expression:

(DIV (ADD (ADD 3 4) (MULT 4 2)) (SUB 8 5))

8. 09-10 C1 Lisp Programming 27

Evaluate the following expression:

(ADD (SUB 9 5) (EXP 2 3) (MULT (DIV 9 3) 5))

