Recursive Functions Solutions

1. 02-03 C1 Recursive Functions

$$
\begin{aligned}
& \mathrm{F}(18)=\mathrm{F}(18-4)-2=-8-2=-10 \\
& \mathrm{~F}(14)=\mathrm{F}(14-4)-2=-6-2=-8 \\
& \mathrm{~F}(10)=\mathrm{F}(10-4)-2=-4-2=-6 \\
& \mathrm{~F}(6)=-4
\end{aligned}
$$

2. 02-03 C1 Recursive Functions

$$
\mathrm{F}(\mathrm{~F}(\mathrm{~F}(3)))=\mathrm{F}(\mathrm{~F}(9))=\mathrm{F}(10)=11
$$

3. 03-04 C1 Recursive Functions
$\mathrm{f}(10)=\mathrm{f}(8)+1=6+1=7$
$\mathrm{f}(8)=\mathrm{f}(6)+1=5+1=6$
$\mathrm{f}(6)=\mathrm{f}(4)+1=4+1=5$
f $(4)=4$
4. 03-04 C1 Recursive Functions
$\mathrm{f}(8)=\mathrm{f}(\mathrm{f}(5))+2=\mathrm{f}(-2)+2=-1+2=1$
$\mathrm{f}(5)=\mathrm{f}(\mathrm{f}(2))+2=\mathrm{f}(-1)+2=-4+2=-2$
$\mathrm{f}(2)=2^{2}-5=-1$
$f(-1)=(-1)^{2}-5=-4$
$f(-2)=(-2)^{2}-5=-1$
5. 04-05 C1 Recursive Functions

$$
\begin{aligned}
\mathrm{f}(5) & =\mathrm{f}(\mathrm{f}(5-3))+3 \\
& =\mathrm{f}(\mathrm{f}(2))+3=\mathrm{f}(2)+3=2+3=5 \\
\mathrm{f}(2) & =\mathrm{f}(\mathrm{f}(2-3))+3 \\
& =\mathrm{f}(\mathrm{f}(-1))+3=\mathrm{f}(-1)+3=-1+3=2
\end{aligned}
$$

6. 04-05 C1 Recursive Functions
$\mathrm{f}(13,2)=\mathrm{f}(10,4)-1=7-1=6$
6
$\mathrm{f}(10,4)=\mathrm{f}(7,6)-1=8-1=7$
$\mathrm{f}(7,6)=\mathrm{f}(4,8)-1=9-1=8$
$\mathrm{f}(4,8)=\mathrm{f}(1,10)-1=10-1=9$
$\mathrm{f}(1,10)=\mathrm{f}(3,6)+1=9+1=10$
$f(3,6)=9$

7. 05-06 C1 Recursive Functions

$\mathrm{F}(5)=\mathrm{F}(\mathrm{F}(4))-2=\mathrm{F}(-5)-2=22-2=20$
$F(4)=F(F(3))-2=F(0)-2=-3-2=-5$
$\mathrm{F}(3)=\mathrm{F}(1)+1=-1+1=0$
$\mathrm{F}(1)=\mathrm{F}(-1)+1=-2+1=-1$
$\mathrm{F}(-1)=1-3=-2$
$\mathrm{F}(0)=0^{2}-3=-3$
$\mathrm{F}(-5)=25-3=22$

STAGE 1
STAGE 2

1 segment added
2 segments added
STAGE 3 T 4 segments added
Following the pattern, 8 segments are added in stage 4 and 16 in stage 5 .
9. 06-07 C1 Recursive Functions

$$
\begin{aligned}
& \mathrm{f}(23)=\mathrm{f}(17)+2=79 \\
& \mathrm{f}(17)=\mathrm{f}(11)+2=77 \\
& \mathrm{f}(11)=\mathrm{f}(5)+2=75 \\
& \mathrm{f}(5)=2 * \mathrm{f}(6)-1=73 \\
& \mathrm{f}(6)=36+1=37
\end{aligned}
$$

10. 06-07 C1 Recursive Functions
$\mathrm{f}(5,11)=\mathrm{f}(6,9)+1=6$
$\mathrm{f}(6,9)=\mathrm{f}(7,7)+1=5$
$\mathrm{f}(7,7)=2 * \mathrm{f}(9,6)-2=4$
$f(9,6)=3 * 9-4 * 6=3$

11. 07-08 C1 Recursive Functions

$f(150)=f(30-2)+10=24$
So $(f(f(f(150))))$
$f(28)=f(5-2)+10=14$
$=f(f(f(24)))$
$f(3)=1+3=4$
$=f(f(13))$
$f(24)=f(4-2)+10=13$
$=f(4)$
$f(2)=1+2=3$
$=6$
$f(13)=f(4+2)-5=4$
$f(6)=3+6=9$
$f(4)=2+4=6$

12. 07-08 C1 Recursive Functions

$f(10)=f(10-3)+10=f(7)+10=35+10=45$
$f(7)=f(7+1)-2=f(8)-2=37-2=35$
$f(8)=f(8+1)-2=f(9)-2=39-2=37$
$f(9)=f(9-3)+9=f(6)+9=30+9=39$
$f(6)=6^{2}-6=36-6=30 \quad$ Now substitute backwards.
$f(10)=f(10-2)+10=f(8)+10=30+10=40$
$f(8)=f(8-2)+8=f(6)+8=22+8=30$
$f(6)=f(6-2)+6=f(4)+6=16+6=22$
$f(4)=f(4+1)-4=f(5)-4=20-4=16$
$f(5)=4 * 5=20 \quad$ Now substitute backwards.

14. 08-09 C1 Recursive Functions

\# hours	12	24	36	48	$60 \ldots \ldots \ldots .108$	120
\# amoeba	2	4	8	16	$32 \ldots \ldots .512$	1024
\# days	0.5	1	1.5	2	$2.5 \ldots \ldots \ldots .4$	5

15. 09-10 C1 Recursive Functions
$f(12)=f(10)+1=4+1=5$
$f(10)=f(8)+1=3+1=4$
$f(8)=f(6)+1=2+1=3$
$f(6)=f(7)-2=4-2=2$
$f(7)=4 \quad$ Now substitute backwards.
16. 09-10 C1 Recursive Functions
$f(10,4)=f(8,5)-3=-10-3=-13$
$f(8,5)=f(6,6)-3=-7-3=-10$
$f(6,6)=f(8,4)+1=-8+1=-7$
$f(8,4)=f(6,5)-3=-5-3=-8$
$f(6,5)=f(4,6)-3=-2-3=-5$
$f(4,6)=4^{2}-3^{*} 6=16-18=-2 \quad$ Substitute backwards.
17. 10-11 C1 Recursive Functions
$f(36)=f(18)-3=23-3=20$
$f(18)=f(9)-3=26-3=23$
$f(9)=f(10)+4=22+4=26$
$f(10)=f(5)-3=25-3=22$
$f(5)=25 \quad$ Now substitute backwards.
18. 10-11 C1 Recursive Functions

$$
\begin{aligned}
& f(1,11)=f(3,8)+2=23+2=25 \quad f(6,2)=2 * 6+5 * 2=22 \\
& f(3,8)=f(5,5)+2=21+2=23 \\
& f(5,5)=f(4,5)-3=24-3=21 \\
& f(4,5)=f(6,2)+2=24 \quad \text { Substitute backwards. }
\end{aligned}
$$

$f(12)=f(10)+3=7+3=10$
$f(10)=f(8)+3=4+3=7$
$f(8)=f(6)+3=1+3=4$
$f(6)=6-5=1 \quad$ Now substitute backwards.

20. 11-12 C1 Recursive Functions

$$
\begin{aligned}
& f(12,4)=f(11,6)+1=2 \\
& f(11,6)=f(10,8)+1=1 \\
& f(10,8)=f(9,10)+1=0 \\
& f(9,10)=9-10=-1 \quad \text { Now substitute backwards. }
\end{aligned}
$$

21. 02-03 C1 Recursive Functions

The first time through the function gives 1 painted triangle as shown.
The second recursion gives 3 , the third gives 9 , the fourth gives 27 and the fifth gives $81.1+3+9+27+81=121$. This is Sierpinski's Triangle.

22. 05-06 C1 Recursive Functions

The sequence in length times the number of segments is as follows:
$16(1)+8(2)+4(4)+2(8)+1(16)+0.5(32)=96$.

23. 06-07 C1 Recursive Functions

In the first step $3^{0}=1$ triangle is removed.
In the second step $3^{1}=3$ triangles are removed.
In the third step $3^{2}=9$ triangles are removed.
In this manner in the fifth step $3^{4}=81$ triangles are removed.

