1. What Does this Program Do - 2D Arrays

What is printed when this program is run?

```
for I= 1 to 3
        for J = 1 to 3
            A(I,J) = I + J
            B}(I,J)=I*
            C}(\textrm{I},\textrm{J})=\textrm{A}(\textrm{I},\textrm{J})+\textrm{B}(\textrm{J},\textrm{I}
        next J
next I
print C(1,1)+C(2,2)+C(3,3)
end
```

answer: 26

The program produces the following arrays:

4	5	6	3	6	9	7	11	15
3	4	5	2	4	6	5	8	5
2	3	4	1	2	3	3	3	4
	$[A]$			$[B]$			$[C]$	

$$
\begin{gathered}
\therefore 3+8+15 \\
=26
\end{gathered}
$$

2. What Does this Program Do - 2D Arrays

What is the output of this program after execution?

```
for i= 1 to 4
    for j=1 to 4
        a(i,j) = i + j
    next j
next i
for i = 1 to 4
    for j = 1 to 4
            if a(i,j)/4 = int(a(i,j)/4) then a(i,j)=0 else a(i,j) =a(i,j)+1
            if a(i,j)/3=\operatorname{int}(a(i,j)/3) then a(i,j)=0 else a(i,j)=a(i,j) - 1
        next j
next i
c = 0
for i=1 to 4
        for j=1 to 4
            if a(i,j)= i + j then c = c + 1
    next j
next i
print c
end
```

answer: 7

The first double loop sets up the initial array.

2	3	4	5
3	4	5	6
4	5	6	7
5	6	7	8

The next double loop searches for multiples of 4 and 3 . Sets that entry to 0 and adds or subtracts 1 from the rest.

0	3	-1	0
3	-1	0	6
-1	0	6	7
0	6	7	0

The last double loop counts the entries that are unchanged from the initial values
3. Given array A below, what is the final value of C after the program is run?

Note: $\mathrm{A}(1,1)=21$.
$\mathrm{C}=\mathrm{O}$
FOR I = 1 TO 4
FOR J = 1 TO 4

$$
\begin{aligned}
& \mathrm{IF} \mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 4=\mathrm{INT}(\mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 4) \text { THEN } \mathrm{A}(\mathrm{I}, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J}) / 4 \\
& \mathrm{IF} \mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 3=\mathrm{INT}(\mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 3) \text { THEN } \mathrm{A}(\mathrm{I}, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J}) / 3 \\
& \mathrm{IF} \mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 10=\mathrm{INT}(\mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 10) \text { THEN } \mathrm{A}(\mathrm{I}, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J}) / 10 \\
& \mathrm{IF} \mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 2=\mathrm{INT}(\mathrm{~A}(\mathrm{I}, \mathrm{~J}) / 2) \text { THEN } \mathrm{A}(\mathrm{I}, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J}) / 2
\end{aligned}
$$

NEXT J
NEXT I
FOR I = 4 TO 1 STEP -1
FOR $\mathrm{J}=1 \mathrm{TO} 4$
IF $\mathrm{A}(\mathrm{I}, \mathrm{J})=1$ THEN $\mathrm{C}=\mathrm{C}+1$ NEXT J
NEXT I

21	8	4	90
48	44	1	27
70	5	36	10
16	40	81	24

PRINT C
END
answer: 6

This program changes entries in the table that are divisible by $4,3,10$ and 2 . Then it counts the entries with a value of 1 . The final table is:

7	1	1	3
2	11	1	9
7	5	3	1
2	1	27	1

