The first loop produces the following table:

4	1	2	6	2
0	2	4	1	3
2	1	2	4	2

The second loop adds: $\mathrm{A}(1,2)+\mathrm{A}(1,5)+\mathrm{A}(3,2)+\mathrm{A}(3,5)=1+2+1+2=6$
19. 06-07 C3 What Does this Program Do - 2D Arrays

The program produces the following array:

0	-1	-2	0
1	-2	0	-4
-2	2	-2	-1
-2	-4	1	-3

23. 07-08 C3 What Does this Program Do - 2D Arrays

The program produces the following array:

1	4	9
1	16	36
1	3	81
2	4	6

S contains the sum of the elements $=164$
27. 08-09 C3 What Does this Program Do - 2D Arrays

The program produces the following arrays:

4	5	6		3	6	9
3	4	5		2	4	6
2	3	4		1	2	3
	A				B	
	7	11	15			
	5	8	5			$\therefore 3+8+15$
	3	3	4			

30. 09-10 C2 What Does this Program Do - 1D Arrays

This program takes each number and adds the proper factors
(factors less than the number) of that number. If the sum and the number differ by 1 , then it is printed. This occurs only for numbers that are powers of 2 . That is 2,16 , and 32 .

31. 09-10 C3 What Does this Program Do - 2D Arrays

The program produces the following arrays:
A

3	4	5	6
5	6	7	8
7	8	9	10
9	10	11	12

B

4	7	6	12
6	12	8	15
8	15	13	18
13	18	12	28

$\mathrm{B}(\mathrm{I}, \mathrm{J})$ contains the sum of the factors of $\mathrm{A}(\mathrm{I}, \mathrm{J})$.
12 has the most factors and they add to 28.

47. 13-14 C3 What Does this Program Do - 2D Arrays

This program changes entries in the table that are divisible by
$4,3,10$ and 2 . Then it counts the entries with a value of 1 .
The final table is:

7	1	1	3
2	11	1	9
7	5	3	1
2	1	27	1

52. 14-15 C4 What Does this Program Do - 2D Arrays

The first nested loop fills the 10x10 array with the numbers 1-100.
The WHILE loop checks each number from 2 to 10 and changes every multiple of these numbers to 0 except the number itself.
The final nested loop counts the number of non-zero numbers left. This algorithm is Eratosthenes' Sieve for finding the prime numbers. The answer: 21

